Molecular characterization of the acquisition of longevity during seed maturation in soybean
نویسندگان
چکیده
Seed longevity, defined as the ability to remain alive during storage, is an important agronomic factor. Poor longevity negatively impacts seedling establishment and consequently crop yield. This is particularly problematic for soybean as seeds have a short lifespan. While the economic importance of soybean has fueled a large number of transcriptome studies during embryogenesis and seed filling, the mechanisms regulating seed longevity during late maturation remain poorly understood. Here, a detailed physiological and molecular characterization of late seed maturation was performed in soybean to obtain a comprehensive overview of the regulatory genes that are potentially involved in longevity. Longevity appeared at physiological maturity at the end of seed filling before maturation drying and progressively doubled until the seeds reached the dry state. The increase in longevity was associated with the expression of genes encoding protective chaperones such as heat shock proteins and the repression of nuclear and chloroplast genes involved in a range of chloroplast activities, including photosynthesis. An increase in the raffinose family oligosaccharides (RFO)/sucrose ratio together with changes in RFO metabolism genes was also associated with longevity. A gene co-expression network analysis revealed 27 transcription factors whose expression profiles were highly correlated with longevity. Eight of them were previously identified in the longevity network of Medicago truncatula, including homologues of ERF110, HSF6AB, NFXL1 and members of the DREB2 family. The network also contained several transcription factors associated with auxin and developmental cell fate during flowering, organ growth and differentiation. A transcriptional transition occurred concomitant with seed chlorophyll loss and detachment from the mother plant, suggesting the activation of a post-abscission program. This transition was enriched with AP2/EREBP and WRKY transcription factors and genes associated with growth, germination and post-transcriptional processes, suggesting that this program prepares the seed for the dry quiescent state and germination.
منابع مشابه
Inference of Longevity-Related Genes from a Robust Coexpression Network of Seed Maturation Identifies Regulators Linking Seed Storability to Biotic Defense-Related Pathways.
Seed longevity, the maintenance of viability during storage, is a crucial factor for preservation of genetic resources and ensuring proper seedling establishment and high crop yield. We used a systems biology approach to identify key genes regulating the acquisition of longevity during seed maturation of Medicago truncatula. Using 104 transcriptomes from seed developmental time courses obtained...
متن کاملA regulatory network-based approach dissects late maturation processes related to the acquisition of desiccation tolerance and longevity of Medicago truncatula seeds.
In seeds, desiccation tolerance (DT) and the ability to survive the dry state for prolonged periods of time (longevity) are two essential traits for seed quality that are consecutively acquired during maturation. Using transcriptomic and metabolomic profiling together with a conditional-dependent network of global transcription interactions, we dissected the maturation events from the end of se...
متن کاملProtein Synthesis during Natural and Precocious Soybean Seed (Glycine max [L.] Merr.) Maturation.
Protein synthesis was studied during precocious and natural soybean seed (Glycine max [L.] Merr.) maturation. Developing seeds harvested 35 days after flowering were precociously matured through controlled dehydration. Total soluble proteins and proteins labeled with [(35)S]methionine were extracted from control, developing seeds and from precociously and naturally matured seeds and were analyz...
متن کاملAssessment of seed storage protein composition of six Iranian adopted soybean cultivars [Glycine max (L.) Merrill.]
Seed protein quality is an important topic in the production of soybean. The quality of soybean proteins is limited by anti-nutrient proteins and low levels of essential sulfur amino acids. In this study, protein content and solubility of six cultivars were evaluated and seed storage proteins were analyzed using SDS-PAGE and scanning densitometry. The results showed that seed storage protein ba...
متن کاملEnhanced Expression of BiP Is Associated with Treatments that Extend Storage Longevity of Primed Tomato Seeds
While seed priming (hydration in water or osmotic solutions followed by drying) enhances seed germination performance, the longevity of primed seeds in storage often is reduced. Postpriming treatments including a reduction in seed water content followed by incubation at 37 or 40 °C for 2 to 4 h can substantially restore potential longevity in tomato (Lycopersicon esculentum Mill.) seeds. These ...
متن کامل